The CO_2 -NO van der Waals Complex and the Covalently Bonded CO_2NO^- Anion: A Matrix-Isolation FTIR and Theoretical Study

Mingfei Zhou,* Luning Zhang, and Qizong Qin

Contribution from the Laser Chemistry Institute, Fudan University, Shanghai, 200433, P.R. China Received January 3, 2000

Abstract: Laser ablation of transition metal targets with concurrent 11 K deposition of NO/CO₂/Ar mixture produces ON-CO₂ van der Waals complex absorption at 1876.5 cm⁻¹ and three additional metal independent absorptions at 1713.6, 1495.8, and 1310.4 cm⁻¹. Based on isotopic substitution and theoretical calculations, these three bands are assigned to the antisymmetric CO₂ stretching, N-O stretching, and symmetric CO₂ stretching vibrations of the CO₂NO⁻ anion. Our theoretical calculation results show that the CO₂NO⁻ anion is a covalently bound molecule with coordination between the C and N atoms. The binding energy of the CO₂NO⁻ with respect to CO₂ + NO⁻ is estimated to be about 21–22 kcal/mol.

Introduction

The nitric oxide molecule has one unpaired electron in the $2\pi^*$ orbital, which makes it more reactive than other diatomic molecules such as CO and N₂. The NO molecule can form a dimmer easily, which has been the subject of numerous theoretical¹ and experimental studies.² The carbon dioxide neutral dimmer has also been well studied, and its nonplanar C_{2h} configuration has been determined.^{3,4} van der Waals complexes of NO-X and CO₂-X (X = rare gas atoms, H₂O, CO, et al.) have received much attention in recent years.⁵ To our knowledge, there is no report on the CO₂-NO complex.

Molecular ions derived from carbon dioxide, nitric oxide, and their clusters have been proven to participate in the chemistry of the terrestrial stratosphere and lower ionosphere,⁶ and are potential intermediates in carbon dioxide and nitric oxide reduction processes. Both carbon dioxide and nitric oxide cluster anions have been intensively studied by experiment and by theoretical calculations.^{7–15} The photoelectron spectra and vertical detachment energies of these cluster anions prepared

(5) See for example: Shafizadeh, N.; Brechignac, P.; Dyndgaard, M.;
Fillion, J. H.; Gauyacq, D.; Levy, B.; Miller, J. C.; Pino, T.; Raoult, M. J. Chem. Phys. 1998, 108, 9313. Yan, J. S.; Yang, M. H.; Xie, D. Q. J. Chem. Phys. 1998, 109, 10284. Raducu, V.; Jasmin, D.; Dahoo, R.; Brosset, P.;
Gauthier-Roy, B.; Abouaf-Marguin, L. J. Chem. Phys. 1995, 102, 9235.
(6) Ferguson, E. E.; Fehsenfeld, F. C.; Albritton, D. L. In Gas-Phase

(6) Ferguson, E. E.; Fehsenfeld, F. C.; Albritton, D. L. In *Gas-Phase Ion Chemistry*; Bowers, M. T., Ed.; Academic: NewYork, 1979; Vol. 1, p 45.

(7) Coe, J. V.; Snodgrass, J. T.; Freidhoff, C. B.; McHugh, K. M.; Bowen, K. H. J. Chem. Phys. **1987**, 87, 4302. Posey, L. A.; Johnson, M. A. J. Chem. Phys. **1988**, 88, 5383. Arnold, D. W.; Newmark, D. M. J. Chem. Phys. **1995**, 102, 7035.

(8) Jacox, M. E.; Thompson, W. E. J. Chem. Phys. **1990**, 93, 7609.

(9) Strobel, A.; Knoblanch, N.; Agreiter, J.; Smith, A. M.; Neider-Schatteburg, G.; Bondybey, V. E. J. Phys. Chem. **1995**, *99*, 872.

(10) Andrews, L.; Zhou, M. F.; Willson, S. P.; Kushto, G. P. J. Chem. Phys. 1998, 109, 177.

(11) Lugez, C. L.; Thompson, W. E.; Jacox, M. E.; Snis, A.; Panas, I. J. Chem. Phys. **1999**, 110, 10345.

by electron attachment have been measured in the gas phase.^{7,12} The vibrational spectra of simple carbon dioxide and nitric oxide cluster anions were observed in rare gas matrices.^{10,11,14,15} Studies of the clusters involving both CO_2 and NO units were focused on cations such as $NO^+(CO_2)_n$ (n = 1-5).¹⁶ However, there is no report on the anions that contain both CO_2 and NO units up to now. The CO_2NO^- anion is the simplest anion species involving both CO_2 and NO units and is isoelectronic with the neutral N_2O_3 molecule.

Laser ablation has proven to be an effective method to generate reaction intermediates and radicals for matrix isolation spectroscopic studies.¹⁷ Bondybey first reported that the products of laser ablation can be trapped for leisurely investigation in low-temperature matrices.¹⁸ Besides neutral species, laser ablation also produces electrons and abundant ions.^{19–21} Recent works in Andrews' group^{10,14,22,23} showed that metal-dependent as well as metal-independent anions can be formed via electron capture during condensation of laser-ablated metal atoms and electrons with small molecules. In this paper, we present the first experimental observation of laser-ablated metal atoms and electrons with NO and CO₂ mixture in excess argon.

Experimental and Computational Methods

The experimental setup for pulsed laser ablation and matrix infrared spectroscopic investigation is similar to that described previously.^{24,25}

(12) DeLuca, M. J.; Niu, B.; Johnson, M. A. J. Chem. Phys. **1988**, 88, 5857. Tsukuda, T.; Johnson, M. A.; Nagata, T. Chem. Phys. Lett. **1997**, 268, 429.

(13) Fleischman, S. H.; Jordan, K. D. J. Phys. Chem. 1987, 91, 1300.

(14) Zhou, M. F.; Andrews, L. J. Chem. Phys. 1999, 110, 2414, 6820.

(15) Thompson, W. E.; Jacox, M. E. J. Chem. Phys. **1999**, 111, 4487.

(16) Hiraoka, K; Yamabe, S. J. Chem. Phys. **1991**, 95, 6800.

(17) See for example: Bondybey, V. E.; Smith, A. M.; Agreiter, J. Chem. Rev. 1996, 96, 2113 and references therein.

(18) Bondybey, V. E. J. Phys. Chem. **1982**, 86, 3396.

(19) Bondybey, V. E.; English, J. H. Chem. Phys. Lett. **1984**, 111, 195.

(20) Knight, L. B., Jr.; Earl, E.; Ligon, A. R.; Cobranchi, D. P.;

Woodward, J. R.; Bostick, J. M.; Davidson, E. R.; Feller, D. J. Am. Chem. Soc. 1986, 108, 5065.

(21) Rasanen, M.; Liu, J. Y.; Dzugan, T. P.; Bondybey, V. E. Chem. Phys. Lett. 1987, 142, 308.

(22) Zhou, M. F.; Andrews, L. J. Am. Chem. Soc. 1998, 120, 11499.

(23) Zhou, M. F.; Andrews, L. J. Am. Chem. Soc. 1999, 121, 9171.

(24) Chen, M. H.; Wang, X. F.; Zhang, L. N.; Yu, M.; Qin, Q. Z. Chem. Phys. 1999, 242, 81.

10.1021/ja000041v CCC: \$19.00 © 2000 American Chemical Society Published on Web 04/20/2000

⁽¹⁾ See for example: East, A. L. L.; McKellar, A. R. W.; Watson, J. K. G. J. Chem. Phys. **1998**, 109, 4378 and references therein.

⁽²⁾ See for example: East, A. L. L. J. Chem. Phys. **1998**, 109, 2185. Duarte, H.; Proynov, E.; Salahub, D. R. J. Chem. Phys. **1998**, 109, 26.

⁽³⁾ See for example: Knozinger, E.; Beichert, B. J. Phys. Chem. **1995**, 99, 4906. Dutton, C.; Sazonor, A.; Beaudet, R. A. J. Chem. Phys. **1996**, 100, 17772.

⁽⁴⁾ See for example: Pubanz, G. A.; Maroncelli, M.; Nibler, J. W. Chem. Phys. Lett. **1985**, *120*, 313.

Figure 1. Infrared spectra in the $1920-1760 \text{ cm}^{-1}$ region from codeposition of NO and CO₂ in excess argon at 11K: (a) 0.2% NO, (b) 0.2% NO + 0.5% CO₂, and (c) after 25 K annealing of sample (b).

The 1064 nm Nd:YAG laser fundamental (Spectra Physics, DCR 150, 20 Hz repetition rate and 8 ns pulse width) was focused onto a rotating metal target through a hole in a CsI window, and the ablated metal atoms and electrons were co-deposited with NO and CO₂ mixtures in excess argon onto a 11 K CsI window, which was mounted on a cold tip of a closed-cycle helium refrigerator (Air Products, Model CSW202) for 1-2 h at a rate of 2-4 mmol/h. Typically, 5-10 mJ/pulse laser power was used. Nitric oxide and carbon dioxide (Shanghai BOC, 99.99%) and isotopic ${}^{12}C{}^{16}O_2 + {}^{13}C{}^{16}O_2$ and ${}^{12}C{}^{16}O_2 + {}^{12}C{}^{16}O{}^{18}O + {}^{12}C{}^{18}O_2$ mixtures (Cambridge Isotope Laboratories) were used in different experiments. Infrared spectra were recorded on a Bruker IFS113V spectrometer at 0.5 cm⁻¹ resolution using a DTGS detector.

Quantum chemical calculations were performed to predict the structure and vibrational frequencies of the CO_2 –NO van der Waals complex and the CO_2NO^- anion using the Gaussian 98 program.²⁶ The three parameter hybrid functional according to Becke with additional correlation corrections due to Lee, Yang, and Parr were utilized (B3LYP).^{27,28} Additional comparison ab initio calculations were also done using the second-order Moller–Plesset perturbation theory (MP2) as well.²⁹ The 6-311+G(d), 6-311+G(2df), and aug-cc-PVDZ basis sets were used for C, N, and O atoms.^{30,31} The geometries were fully optimized and vibrational frequencies calculated with analytic second derivatives.

Results and Discussion

Infrared Spectra. Figure 1 shows the infrared absorption spectra of 0.2% NO in argon (trace a) and a mixture of 0.2% NO + 0.5% CO₂ in argon (trace b) in the region of the N–O

(27) Lee, C.; Yang, E.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

(30) McLean, A. D.; Chandler, G. S. J. Chem. Phys. **1980**, 72, 5639. (31) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys.

1980, *72*, 650.

Figure 2. Infrared spectra in the $1750-1290 \text{ cm}^{-1}$ region from codeposition of laser-ablated Ag with different samples: (a) 0.2% CO₂, (b) 0.1% NO, and (c) 0.1% NO + 0.2%CO₂.

Table 1. Metal Independent Absorptions (cm $^{-1}$) from Co-deposition of Laser-Ablated Metal with CO₂/NO/Ar Mixtures at 11 K

${}^{12}\mathrm{C}{}^{16}\mathrm{O}_2$	$^{13}C^{16}O_2$	$^{12}C^{16}O^{18}O$	$^{12}C^{18}O_2$	assignment
1876.5				CO ₂ -NO N-O str
1713.6	1666.0	1698.4	1682.3	CO ₂ NO ⁻ asy-CO ₂
1495.8	1494.8		1494.8	CO ₂ NO ⁻ N-O str
1310.4	1292.2	1289.8	1270.7	CO ₂ NO ⁻ sym-CO ₂

stretching vibration. The NO/Ar spectrum reveals the strong NO absorption at 1871.8 cm⁻¹, and weak absorptions at 1863.3 and 1776.1 cm⁻¹ due to the symmetric and antisymmetric N–O stretching vibrations of the *cis*-(NO)₂. New absorption at 1876.5 cm⁻¹ was observed in the NO/CO₂/Ar spectrum, annealing to 25 K decreased the NO absorption at 1871.8 cm⁻¹ and increased the *cis*-(NO)₂ absorptions and the 1876.5 cm⁻¹ absorption (trace c in Figure 1).

Laser ablation experiments were done using the Pd and Ag metal targets with different NO and CO₂ concentrations, and the metal-independent absorptions are listed in Table 1. Figure 2 shows spectra in the 1750–1290 cm⁻¹ region using an Ag target with different samples in excess argon. After 1 h sample deposition at 11 K, the CO₂⁻ anion absorption at 1657.0 cm⁻¹ and the (CO₂⁻)(CO₂)_{*x*} complex absorption at 1652.8 cm⁻¹ were observed in this spectral region using 0.2% CO₂ in argon, as shown in trace (a). Trace (b) shows the spectrum with 0.1% NO in argon, and sample deposition reveals the NO₂ absorption at 1610.8 cm⁻¹. Trace (c) shows the spectrum using a 0.1% NO + 0.2%CO₂ mixed sample; new absorptions were observed at 1713.6, 1495.8, and 1310.4 cm⁻¹, but the CO₂⁻ and (CO₂⁻)(CO₂)_{*x*} absorptions were eliminated.

Similar experiments were done using a Pd target, and representative spectra in the $1740-1290 \text{ cm}^{-1}$ region are shown in Figure 3. When the NO/Ar sample was used, no distinctive absorptions were observed in this region except those of H₂O and NO₂ absorption at 1610.8 cm⁻¹ [trace (a)]. The bands at 1713.6, 1495.8, and 1310.4 cm⁻¹ were observed again after deposition with a 0.1% NO + 0.2% CO₂ sample [trace (b)]. These three bands were destroyed upon 20 min of photolysis with a 355 nm laser beam [trace (c)] and could not be

⁽²⁵⁾ Burkholder, T. R.; Andrews, L. J. Chem. Phys. 1991, 95, 8697.
(26) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian* 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

⁽²⁸⁾ Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

⁽²⁹⁾ Moller, C.; Plesset, M. S. Phys. Rev. B 1984, 46, 618.

Figure 3. Infrared spectra in the $1740-1290 \text{ cm}^{-1}$ region from codeposition of laser-ablated Pd with different samples: (a) 0.1% NO, (b) 0.1% NO + 0.2% CO₂, (c) after 20 min of 355 nm photolysis of sample (b), and (d) 0.1% NO + 0.2% CO₂ + 0.04% CCl₄.

Figure 4. Infrared spectra in the 1760–1630 and 1340–1250 cm⁻¹ regions from co-deposition of laser-ablated Ag with different samples: (a) 0.1% NO + 0.2% CO₂, (b) 0.1% NO + (0.3% $^{12}C^{16}O_2$ + 0.3% $^{13}C^{16}O_2$), and (c) 0.1% NO + (0.125% $^{12}C^{16}O_2$ + 0.25% $^{12}C^{16}O^{18}O$ + 0.125% $^{12}C^{16}O_2$).

reproduced on further annealing to 25 K. Trace (d) shows the spectrum using the same experimental conditions as spectrum (b) with 0.04% CCl₄ added to serve as an electron trap; the spectrum showed that the 1713.6, 1495.8, and 1310.4 cm⁻¹ bands were totally eliminated.

Experiments were also done using isotopically labeled samples, and the results are shown in Figure 4. In the mixed 0.2% NO + (0.3% $^{12}C^{16}O_2$ + 0.3% $^{13}C^{16}O_2$) experiments, doublets at 1713.6 and 1666.0 cm⁻¹, 1495.8 and 1494.8 cm⁻¹, 1310.4 and 1292.2 cm⁻¹ were produced for the 1713.6, 1495.8, and 1310.4 cm⁻¹ bands [trace (b)]. In the mixed 0.2% NO + (0.125% $^{12}C^{16}O_2$ + 0.25% $^{12}C^{16}O^{18}O$ + 0.125% $^{12}C^{16}O_2$) experiments [trace (c)], the triplet at 1713.6, 1698.4, and 1682.3

Figure 5. Structures of the CO_2NO^- anion and the CO_2-NO van der Waals complex. For the ¹A' CO_2NO^- , the CNO plane is perpendicular to the OCO plane. The ³A'' CO_2NO^- has planar structure.

cm⁻¹ was produced for the upper mode and the triplet at 1310.4, 1289.8, and 1270.7 cm⁻¹ was produced for the lower mode. It should be mentioned that in Figure 4c, a broad band at 1680 cm⁻¹ contributes to the absorption at 1682.3 cm⁻¹. The 1680 cm⁻¹ band was presented in the Ag + NO/Ar experiments, suggesting that it is a reaction product of Ag and NO, and is most likely due to the N–O stretching vibration of an Ag(NO)_x molecule. It should be noted that there is no obvious metal-dependent absorption in the experiments using Pd as the target.

Calculation Results. B3LYP and MP2 calculations were first done on CO₂, NO neutral molecules, and their anions. The CO₂ bond length was estimated to be between 1.160 and 1.170 Å, very close to the 1.160 Å experimental value.³² The CO₂⁻ anion was predicted to have a bond length lie between 1.229 and 1.238 Å and a bond angle within 137 to 138°, which are in good agreement with higher level CCSD(T)/aug-cc-PVTZ calculations.³³ The B3LYP calculations gave 1.148, 1.146, and 1.154 Å bond lengths for NO in the 6-311+G(d), 6-311+G(2df), and aug-cc-PVDZ basis sets, respectively, which are in excellent agreement with the experimental value of 1.151 Å;³⁴ the MP2 bond length 1.135 Å is slightly shorter than the experimental value; however, the B3LYP and MP2 bond lengths for the NO⁻ (³Σ⁻) (1.262–1.266 Å) are consistent with each other.

Theoretical calculations were performed on the CO_2 –NO van der Waals complex, and one stable structure was found, as shown in Figure 5. The calculated geometric parameters and vibrational frequencies are listed in Table 2. The CO_2 –NO complex was predicted to have a T-shaped structure with the NO monomer along the C_2 symmetry axis of the CO_2 moiety and the N atom facing to the C atom. The distance between the N and C atoms was predicted to be between 3.1 and 3.3 Å at all levels of theory employed here.

Theoretical calculations were done on the CO_2NO^- anion, and one stable minimum was found on both the singlet and triplet potential energy surfaces, as shown in Figure 5. The calculated geometric parameters and vibrational frequencies are listed in Tables3 and 4, respectively. As can be seen excellent agreement is found between the B3LYP hybrid density functional theory and the second-order Moller–Plesset perturbation theory. The calculated vertical detachment energy, adiabatic electron affinity, and dissociation energies with respect to CO_2 + NO⁻ or CO_2^- + NO are listed in Table 5.

The ¹A' state CO₂NO⁻ anion is coordinated between the C and N atoms and has a nonplanar structure with C_s symmetry, with the CNO plane perpendicular to the OCO plane. At the B3LYP/6-311+G(d) level of theory, the C–N bond distance is 1.514 Å and the N–O bond distance is 1.219 Å. The unpaired electron in the π^* orbital of free NO is used to form a covalent

⁽³²⁾ Teffo, J. L.; Sulakshina, O. N.; Perevalo, V. I. J. Mol. Struct. 1992, 156, 48.

⁽³³⁾ Knight, L. B., Jr.; Hill, D.; Berry, K.; Babb, R.; Feller, D. J. Chem. Phys. **1996**, 105, 5672.

⁽³⁴⁾ Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure Constants of Diatomic Molecules; Van Nostrand: New York, 1979.

Table 2. Calculated Energies (hartrees), Geometries (Å, deg), Vibrational Frequencies (cm^{-1}), and Intensities (km/mol) for the CO₂-NO van der Waals Complex at Various Levels

	B3LYP/6-311+G(d)	B3LYP/6-311+G(2df)	B3LYP/aug-cc-PVDZ	MP2/6-311+G(d)
Ε	-318.579150	-318.596129	-318.528095	-317.833640
C-N	3.271	3.305	3.266	3.121
N-O	1.147	1.145	1.153	1.133
C-O	1.161	1.160	1.167	1.170
∠OCO	179.6	179.7	179.7	179.7
OCO asym str	2418.2(696)	2405.9(667)	2387.5(636)	3621.4(2074)
NO str	1984.7(49)	1975.5(47)	1980.1(46)	2433.3(586)
OCO sym str	1373.1(0)	1371.4(0)	1354.6(0)	1335.9(0)
OCO bending	668.3(33)	678.6(29)	667.0(27)	654.8(24)
OCO bending	664.0(45)	673.9(42)	663.3(39)	652.3(34)
out-of-plane wag	59.7(0)	52.8(0)	69.4(0)	84.8(0)
N-C str	42.3(0)	37.4(0)	42.2(0)	57.8(0)
NO wag	19.8(0)	16.8(0)	20.1(0)	10.8(0)
torsion	9.7(0)	6.7(0)	17.9(0)	26.8i(0.2)

Table 3. Calculated Energies (hartrees), Geometries (Å, deg), Vibrational Frequencies (cm⁻¹), and Intensities (km/mol) for the ${}^{1}A' CO_{2}NO^{-1}$ Anion at Various Levels

	B3LYP/6-311+G(d)	B3LYP/6-311+G(2df)	B3LYP/aug-cc-PVDZ	MP2/6-311+G(d)
Ε	-318.625586	-318.640855	-318.577470	-317.859772
C-N	1.514	1.508	1.510	1.516
N-O	1.219	1.217	1.224	1.232
C-O	1.238	1.236	1.244	1.243
∠CNO	114.5	114.7	114.2	112.4
∠OCO	134.6	134.5	134.4	135.0
OCO asym str	1743.9(633)	1735.9(605)	1726.0(591)	1778.3(725)
NO str	1561.5(196)	1559.4(184)	1563.7(180)	1507.1(44)
OCO sym str	1333.5(141)	1337.6(136)	1328.9(129)	1339.8(171)
C-N str	911.7(11)	916.7(12)	909.6(10)	924.7(4)
OCO bending	789.7(28)	795.8(26)	787.4(22)	815.5(45)
OCO bending	549.1(12)	551.1(12)	550.6(13)	568.2(10)
NO wag	340.4(9)	340.4(8)	339.0(8)	344.0(8)
Out-of-plane wag	329.5(1)	325.3(0.8)	324.9(0.7)	364.7(4)
torsion	142.2(0)	147.4(0)	148.0(0)	102.1(0.3)

Table 4. Calculated Energies (hartrees), Geometries (Å, deg), Vibrational Frequencies (cm⁻¹), and Intensities (km/mol) for the ³A" CO₂NO⁻ Anion at Various Levels

	B3LYP/6-311+G(d)	B3LYP/6-311+G(2df)	B3LYP/aug-cc-PVDZ	MP2/6-311+G(d)
Ε	-318.61870	-318.633312	-318.568770	-317.841077
C-N	1.849	1.845	1.781	1.814
N-O	1.226	1.223	1.230	1.232
C-O	1.206	1.204	1.217	1.212
∠CNO	120.6	120.5	121.2	120.5
∠0C0	143.9	143.9	141.8	144.1
OCO asym str	1984.1(721)	1976.6(699)	1925.3(672)	2013.3(728)
N-O str	1554.2(116)	1552.3(112)	1561.0(94)	1636.3(138)
OCO sym str	1275.0(313)	1275.1(299)	1260.6(280)	1285.3(298)
OCO bending	680.6(22)	684.1(19)	680.7(18)	704.2(208)
OCO bending	669.2(253)	664.7(240)	663.0(202)	699.4(16)
NO wag	452.5(8)	449.0(8)	468.0(9)	487.1(44)
C-N str	251.4(24)	248.4(21)	258.6(22)	248.3(19)
CO_2 wag	172.8(110)	168.6(114)	188.1(125)	264.9(149)
torsion	101.5(0)	102.1(0)	102.4(0)	115.5(0)

bond with C and the N rehybridizes from sp to sp². As a result, the C–N bond is a single bond, while the N–O bond becomes a double bond as evident from the longer N–O bond length versus free NO. The charge is delocalized, with about 0.3e located on the NO moiety and 0.7e located on the CO₂ moiety. The dissociation energies with respect to separated $CO_2 + NO^-$ or $CO_2^- + NO$ were predicted to be 21–25 and 38–42 kcal/ mol, respectively, without zero-point energy correction. This anion can be viewed as forming from electron capture by the T-shaped CO₂–NO van der Waals complex; as listed in Table 5, the adiabatic electron affinity was predicted to be around 1.2 eV at the B3LYP levels.

The ${}^{3}A'' CO_{2}NO^{-}$ anion is also coordinated between N and C atoms, but has a planar structure with C_{s} symmetry. It was

Table 5. Vertical Detachment Energy (VDE, eV), Dissociation Energy (D_0 , kcal/mol) with Respect to $CO_2 + NO^-$ and $CO_2^- + NO$, and the Adiabatic Electron Affinity (E_a , eV) Calculated at Various Levels (values after zero-point energy corrections are listed in parentheses)

	VDE	D) ₀	E_{a}
B3LYP/6-311+G(d)	3.6	21.0 (19.3) ^a	$38.1(35.1)^{b}$	1.26(1.24)
B3LYP/6-311+G(2df)	3.6	21.2(19.6)	38.1(35.1)	1.22(1.19)
B3LYP/aug-cc-PVDZ	3.6	22.6(20.9)	39.2(36.2)	1.34(1.31)
MP2/6-311+G(d)	4.8	25.3(23.6)	41.6(40.8)	0.71(0.78)

 a Calculated with respect to CO₂ + NO⁻. b Calculated with respect to CO₂⁻ + NO.

predicted to be 4.3-5.5 kcal/mol higher in energy than the ¹A' state at the B3LYP levels, and the energy difference was

predicted to be 11.7 kcal/mol at the MP2 level. The C–N bond distance was predicted to be much longer than that of the ¹A' state. At the B3LYP/6-311+G(d) level of theory, the C–N bond distance is 1.849 Å. In this case, the N does not rehybridize and the two unpaired electrons reside in two orbitals formed mainly from the NO π^* orbitals, and can be viewed as a CO₂–NO⁻ complex. The ³A'' state CO₂NO⁻ was predicted to have a shorter C–O bond distance and a more open OCO bond angle.

CO₂–NO Complex. The 1876.5 cm⁻¹ band is assigned to a CO₂–NO van der Waals complex based on theoretical calculations. It is only 4.7 cm⁻¹ blue-shifted from the NO absorption at 1871.8 cm⁻¹, and is produced with mixed NO + CO₂ deposit only. The assignment is strongly supported by theoretical calculations. The N–O stretching vibration of the CO₂–NO complex was predicted to be blue-shifted by 4.3, 5.4, and 6.0 cm⁻¹, respectively, with respect to the calculated N–O stretching vibration of the free NO molecule at the B3LYP/6-311+G-(d), B3LYP/6-311+G(2df), and B3LYP/aug-cc-PVDZ levels of theory. The CO₂ antisymmetric stretching vibration of the CO₂–NO complex was predicted to be red-shifted by 2.6, 0.8, and 1.1 cm⁻¹, respectively, with respect to the free CO₂ absorption and could not be resolved here.

CO₂NO⁻. The 1713.6, 1495.8, and 1310.4 cm⁻¹ bands tracked through all the experiments, suggesting different vibrational modes of the same molecule. The 1713.6 cm⁻¹ band is strong, while the other two bands are much weaker. These three bands were only produced in the mixed NO + CO_2 experiments indicating that both NO and CO₂ units are involved in this species. The band positions observed with different metal targets remain to within 0.1 cm⁻¹ unshifted, suggesting that this species is metal independent and is due to reaction product involving the common reagents, namely electrons produced in the laser ablation process and the NO and CO₂ molecules. The 1713.6 cm^{-1} band shifted to 1666.0 and 1682.3 cm⁻¹ using the $^{13}C^{16}O_2$ and $^{12}C^{18}O_2$ samples and gave 12/13 and 16/18 isotopic ratios of 1.0286 and 1.0186, respectively, which are characteristic of an antisymmetric OCO stretching vibration. The doublet structure in the mixed ${}^{12}C^{16}O_2 + {}^{13}C^{16}O_2$ spectrum and triplet in the mixed ${}^{12}C^{16}O_2 + {}^{12}C^{16}O^{18}O + {}^{12}C^{18}O_2$ spectrum indicated that one CO₂ unit with two equivalent O atoms is involved in this vibrational mode. The weak 1310.4 cm⁻¹ band shifted to 1292.2 cm⁻¹ with ${}^{13}C^{16}O_2$ and to 1270.7 cm⁻¹ with ${}^{12}C^{18}O_2$, and gave a small 12/13 isotopic ratio of 1.0141 and a large 16/18 isotopic ratio of 1.0312, which are characteristic of a symmetric OCO stretching vibration. The mixed ${}^{12}C^{16}O_2$ + $^{13}C^{16}O_2$ spectrum showed a doublet and the mixed $^{12}C^{16}O_2$ + ${}^{12}C^{16}O^{18}O + {}^{12}C^{18}O_2$ spectrum showed a triplet with approximately 1:2:1 relative intensities, indicating that one C atom and two equivalent O atoms are involved in this vibrational mode. The 1495.8 cm⁻¹ band exhibited very small shift when isotopic CO₂ samples were used, suggesting that this band is mainly a N-O stretching vibration and is slightly coupled by the CO₂ unit. Accordingly, this species involves one NO and one CO₂ units, and has the formula NCO₃. The photosensitive behavior and its reduction in CCl₄ doping experiments strongly suggest an anion assignment. Therefore, the 1713.6, 1495.8, and 1310.4 cm⁻¹ bands are assigned to the antisymmetric OCO stretching, N-O stretching, and symmetric OCO stretching vibrations of the CO₂NO⁻ anion.

The CO_2NO^- anion assignment is further confirmed by theoretical calculations. As has been mentioned, the present theoretical calculations predicted that the CO_2NO^- anion has a ¹A' ground state with the antisymmetric OCO stretching, N–O

Table 6. Observed and B3LYP/6-311+G(d) Calculated Isotopic Frequency Ratios for the ${}^{1}A'$ CO₂NO⁻ Anion

	${}^{12}C^{16}O_{2'}$	${}^{12}\mathrm{C}{}^{16}\mathrm{O}_2\!/{}^{13}\mathrm{C}{}^{16}\mathrm{O}_2$		${}^{12}\mathrm{C}{}^{16}\mathrm{O}/{}^{12}\mathrm{C}{}^{18}\mathrm{O}_2$	
mode	calcd	obsd	calcd	obsd	
asym-CO ₂ N-O str sym-CO ₂	1.0274 1.0001 1.0148	1.0286 1.0074 1.0141	1.0181 1.0001 1.0355	1.0186 1.0074 1.0312	

Table 7. Geometric Parameters (Å, deg), Dissociation Energies (kcal/mol), and Mulliken Charge Populations Calculated at the B3LYP/6-311+G(d) Level and the Observed Antisymmetric CO₂ Stretching Vibrational Frequencies (cm⁻¹) for the CO₂⁻XO⁻(X = C, N, O) Anions

	$C_{2}O_{3}^{-}$	$\rm CO_2 NO^-$	CO_4^-
$C-X$ $X-O$ $C-O$ $\angle CXO$ $\angle OCO$ D_0^a	1.617	1.514	1.704
	1.190	1.219	1.317
	1.237	1.238	1.209
	125.4	114.5	112.1
	134.8	134.6	142.4
	11.7	19.3	18.8
$\substack{Q_{\mathrm{X}-\mathrm{O}} \\ v_{\mathrm{asym}-\mathrm{CO}_2}}$	-0.33	-0.28	-0.45
	1701.7	1713.6	1891.5

^{*a*} After zero-point energy corrections.

stretching, and symmetric OCO stretching vibrational frequencies at 1743.9, 1561.5, and 1333.5 cm⁻¹ at the B3LYP/ 6-311+G(d) level, which must be scaled by 0.983, 0.958, and 0.983 to match the observed values; these scale factors are appropriate for this level of theory.³⁵ The calculated intensity distribution (633:196:141) is in excellent agreement with observed relative intensities. The observed and calculated isotopic frequency ratios for these three modes at the B3LYP/ 6-311+G(d) level are presented in Table 6; the calculated ratios are in reasonable agreement with the observed ratios.

It is interesting to compare the CO₂NO⁻ anion with the C₂O₃⁻ anion recently reported in our group³⁶ and the CO₄⁻ anion reported previously.³⁷ Table 7 lists the geometric parameters, dissociation energies, charge distributions calculated at the B3LYP/6-311+G(d) level, and the observed antisymmetric CO_2 stretching vibrational frequency for these three anions. All three anions have very similar structure and are covalently bonded molecules. The CO₄⁻ anion has a slightly more open OCO bond angle, and a higher antisymmetric CO₂ stretching vibrational frequency. It is well-known that calculations on molecular anions are more difficult than those on neutral species; however, B3LYP calculations predicted the dissociation energies of anions such as CO₄⁻ and FCO₂⁻ quite well. The dissociation energies of CO_4^- and FCO_2^- with respect to $CO_2 + O_2^-$ and $F^- + CO_2$ were predicted to be 18.8 and 30.8 kcal/mol at the B3LYP/ 6-311+G(d) level, after zero-point energy corrections,³⁸ slightly lower than the experimental values of 21 and 32.3 kcal/mol.^{39,40} The dissociation energies of C₂O₃⁻ and CO₂NO⁻ with respect to $CO_2^- + CO$ and $CO_2 + NO^-$ were predicted to be 11.7 and 19.3 kcal/mol, respectively; taking the CO₄⁻ and FCO₂⁻ as a criterion, we expect the experimental dissociation energies will be about 2 kcal/mol higher than the calculated values.

The CO_2NO^- anion is isoelectronic with N_2O_3 and CO_4 . The CO_4 neutral is predicted to be a weakly bound O_2C-O_2 van

⁽³⁵⁾ Bytheway, I.; Wong, M. W. Chem. Phys. Lett. 1998, 282, 219.

⁽³⁶⁾ Zhou, M. F.; Zhang, L. N.; Cheng, M. H.; Qin, Q. Z. J. Chem. Phys. in press.

⁽³⁷⁾ Jacox, M. E.; Thompson, W. E. J. Phys. Chem. 1991, 95, 2781.

⁽³⁸⁾ At the B3LYP/6-311+G(d) level, the calculated geometry parameters for the ${}^{1}A_{1}$ FCO₂⁻ are as follows: $R_{CF} = 1.521$ Å, $R_{CO} = 1.219$ Å, $\angle OCO = 138.2^{\circ}$.

⁽³⁹⁾ Fehsenfeld, F. C.; Albritton, D. L.; Streit, G. E.; Davidson, J. A.; Howard, C. J.; Ferguson, E. E. *Atmos. Environ.* **1977**, *11*, 283.

⁽⁴⁰⁾ Hiraoka, K.; Mizuse, S.; Yamabe, S. J. Chem. Phys. 1987, 87, 3647.

der Waals complex with T-shaped geometry. The O₂C-OO distance is predicted to be 3.704 Å at the B3LYP/6-311+G(d) level. This O₂C-O₂ complex is comparable to the ³A" O₂C-NO⁻ anion complex, but the ³A" O₂C-NO⁻ is more strongly bound than the O₂C-O₂ complex due to electrostatic interaction. The most stable structure of the N₂O₃ neutral is planar asym-N₂O₃ coordinated between two N atoms, that is, the two radical electrons combine and form a covalent bond.⁴¹ The asym-N₂O₃ neutral and the ¹A' CO₂NO⁻ anion are more strongly bound than the O₂C-O₂ complex due to covalent bonding character.

It is well-known that laser ablation of a metal target produces a plume that contains metal atoms, cations, and electrons. In our experiments, pulsed laser ablation is combined with the conventional continuous spray matrix gas deposition, in which the laser-ablated plume was expanded into a gas stream of a CO_2 and NO mixture in excess argon. Since the density of atoms and electrons in the plume is high, interaction between the expanding plume and ambient gas molecules could lead to a variety of new molecules and ions. As the formation of the CO_2NO^- anion does not depend on metal targets, the ablated metal atoms themselves do not play a role in the formation of the anion. The metal cations are the most likely counterions to provide the electroneutrality of the solid deposit, as no molecular cation is identified in the product infrared spectra.

There are three possible reactions to form the CO_2NO^- anion. Since the neutral CO_2 -NO van der Waals complex is stable and is observed in our experiments, the CO_2NO^- anion is expected to be formed via electron capture by this neutral CO_2 -NO van der Waals complex, i.e., reaction 1, which was calculated to be exothermic by about 27–29 kcal/mol at the B3LYP levels of theory. The CO_2NO^- anion can also be produced by ion-molecule reactions 2 and 3, which were predicted to be exothermic.

$$CO_2 - NO + e^- \rightarrow CO_2 NO^- \Delta E = -28.5 \text{kcal/mol} (1)$$

 $CO_2 + NO^- \rightarrow CO_2 NO^- \quad \Delta E = -19.3 \text{kcal/mol} \quad (2)$

$$CO_2^{+} + NO \rightarrow CO_2 NO^{-} \Delta E = -35.1 \text{ kcal/mol}$$
 (3)

The CO_2NO^- absorptions decreased on annealing, suggesting that reactions 1-3 do not proceed in an argon matrix, and the

 CO_2NO^- anion are mainly formed in the gas phase or on the surface of the solid deposit during co-condensation.

It is interesting to note that the CO_2^- anion absorption was observed in the pure CO_2/Ar experiments, but was not present in the mixed $CO_2 + NO$ experiments. Weak NO_2^- and $(NO)_2^$ anion absorptions were observed.^{13,42} The NO^- is a very weak infrared absorber, and the vibrational fundamental of groundstate NO^- has not been definitively established in either the gas phase or matrices. The alkali metal atom–nitric oxide molecule reaction products M^+NO^- were observed at 1353– 1374 cm⁻¹ for Li⁺ to Cs⁺ in solid argon.⁴³ Most of the gasphase electron scattering work has given NO^- frequency values in this region with fairly large uncertainty,⁴⁴ but a recent vibrational autodetachment study reported a lower 1284 ± 10 cm⁻¹ value.⁴⁵ There is no obvious absorption in this region that can be assigned to the NO^- anion.

Conclusions

Matrix-isolation FTIR combined with theoretical calculations has been employed to identify a new CO₂NO⁻ anion for the first time. This anion is generated by laser ablation of transition metal targets with concurrent 11 K deposition of NO/CO2/Ar mixtures. Based on isotopic substitution and theoretical calculations, the major observed bands in the IR spectra can be assigned to the antisymmetric CO₂ stretching, N–O stretching, and symmetric CO₂ stretching vibrations of the CO₂NO⁻ anion. The anion assignment was further supported by photolysis and CCl₄ doping experiments. Our theoretical calculation results show that the CO₂NO⁻ anion is a covalently bound molecule with coordination between the C and N atoms. The binding energy of CO_2NO^- with respect to $CO_2 + NO^-$ is estimated to be about 21-22 kcal/mol, comparable to that of the CO₄⁻ anion, and is higher than those of the $C_2O_4^-$ and $C_2O_3^-$ anions. Our experimental results showed that laser ablation of transition metal targets is a powerful technique to produce metalindependent new anions via electron capture of neutral intermediates and free radicals during laser ablation.

Acknowledgment. This work was supported by the 973 project of China.

JA000041V

⁽⁴¹⁾ See for example: Bibart, C. H.; Ewing, G. E. J. Chem. Phys. 1974, 61, 1293.

⁽⁴²⁾ Forney, D.; Thompson, W. E.; Jacox, M. E. J. Chem. Phys. 1993, 99, 7393.

 ⁽⁴³⁾ Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1971, 55, 3404. Tevault,
 D. E.; Andrews, L. J. Phys. Chem. 1973, 77, 1646.

⁽⁴⁴⁾ See for example: Zecca, A.; Lazzizzera, I.; Krauss, M.; Kuyatt, C. E. J. Chem. Phys. **1974**, *61*, 4560.

⁽⁴⁵⁾ Maricq, M. M.; Tanguay, N. A.; O'Brien, J. C.; Rodday, S. M.; Rinden, E. J. Chem. Phys. **1989**, 90, 3136 and references therein.